Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

Abstract

We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO3, KCl, MgCl2, CaCl2) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH4Cl, NH4NO3, (NH4)2SO4) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl2) of the solution evaporation rates are well described by the modified Maxwell equation.

Topics

    3 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)